Search results
Results From The WOW.Com Content Network
The products produced in the reaction depend on the composition of the feed, the hydrocarbon-to-steam ratio, and on the cracking temperature and furnace residence time. Light hydrocarbon feeds such as ethane, LPGs, or light naphtha give mainly lighter alkenes, including ethylene, propylene, and butadiene.
The products produced in the reaction depend on the composition of the feed, the hydrocarbon-to-steam ratio, and on the cracking temperature and furnace residence time. Light hydrocarbon feeds such as ethane, LPGs or light naphtha give product streams rich in the lighter alkenes, including ethylene, propylene, and butadiene.
Ethylene is produced by several methods in the petrochemical industry. A primary method is steam cracking (SC) where hydrocarbons and steam are heated to 750–950 °C. This process converts large hydrocarbons into smaller ones and introduces unsaturation. When ethane is the feedstock, ethylene is the product.
The chief use of ethane is the production of ethylene (ethene) by steam cracking. Steam cracking of ethane is fairly selective for ethylene, while the steam cracking of heavier hydrocarbons yields a product mixture poorer in ethylene and richer in heavier alkenes (olefins), such as propene (propylene) and butadiene, and in aromatic hydrocarbons.
The reaction is exothermic (∆H = -280 kJ/mol) and occurs at high temperatures (750–950 ˚C). [3] In the reaction, methane (CH 4) is activated heterogeneously on the catalyst surface, forming methyl free radicals, which then couple in the gas phase to form ethane (C 2 H 6). The ethane subsequently undergoes dehydrogenation to form ethylene ...
Aqueous solutions of ethylene oxide are rather stable and can exist for a long time without any noticeable chemical reaction. However adding a small amount of acid, such as strongly diluted sulfuric acid , immediately leads to the formation of ethylene glycol , even at room temperature:
Phase behavior Triple point: 104 K (−169 °C), 120 Pa Critical point: 282.5 K (9.4 °C), 50.6 bar Std enthalpy change of fusion, Δ fus H o +3.35 kJ/mol Std entropy change
The Wacker reaction was first reported by Smidt et al. [3] [4] [5] The development of the chemical process now known as the Wacker process began in 1956 at Wacker Chemie. [6] At the time, many industrial compounds were produced from acetylene, derived from calcium carbide, an expensive and