Search results
Results From The WOW.Com Content Network
In the continuum description of a solid body we imagine the body to be composed of a set of infinitesimal volumes or material points. Each volume is assumed to be connected to its neighbors without any gaps or overlaps. Certain mathematical conditions have to be satisfied to ensure that gaps/overlaps do not develop when a continuum body is ...
Mozzi–Chasles' theorem says that every Euclidean motion is a screw displacement along some screw axis. In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a screw displacement. A direct Euclidean isometry in three dimensions involves a translation and a rotation ...
Then they discussed the objection, that there should be no difference between a) the distance between two ends of a connected rod, and b) the distance between two unconnected objects which move with the same velocity with respect to an inertial frame. Dewan and Beran removed those objections by arguing:
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
If B remains on the same side of S with respect to the center of the circle, instead of a ray one can consider just a segment or the rod AB. Wittgenstein sketched a mechanism and wrote: While the point A describes a circle, B describes a figure eight. Now we write this down as a proposition of kinematics.
N = 6, j = 7: this is a six-bar linkage [ it has two links that have three joints, called ternary links, and there are two topologies of this linkage depending how these links are connected. In the Watt topology, the two ternary links are connected by a joint. In the Stephenson topology the two ternary links are connected by binary links; [15]
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
Any displacement of a rigid body may be arrived at by first subjecting the body to a displacement followed by a rotation, or conversely, to a rotation followed by a displacement. We already know that for any collection of particles—whether at rest with respect to one another, as in a rigid body, or in relative motion, like the exploding ...