Search results
Results From The WOW.Com Content Network
<string>.rpartition(separator) Searches for the separator from right-to-left within the string then returns the sub-string before the separator; the separator; then the sub-string after the separator. Description Splits the given string by the right-most separator and returns the three substrings that together make the original.
It returns a substring of the target string starting at a specified index and of a specified length. Usage: {{#invoke:String|sublength|s= target_string |i= start_index |len= length}} Parameters: s The string i The starting index of the substring to return. The first character of the string is assigned an index of 0. len
The #if function selects one of two alternatives based on the truth value of a test string. {{#if: test string | value if true | value if false}} As explained above, a string is considered true if it contains at least one non-whitespace character. Any string containing only whitespace or no characters at all will be treated as false.
A string in JavaScript is a sequence of characters. In JavaScript, strings can be created directly (as literals) by placing the series of characters between double (") or single (') quotes. Such strings must be written on a single line, but may include escaped newline characters (such as \n).
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
In the above example, IIf is a ternary function, but not a ternary operator. As a function, the values of all three portions are evaluated before the function call occurs. This imposed limitations, and in Visual Basic .Net 9.0, released with Visual Studio 2008, an actual conditional operator was introduced, using the If keyword instead of IIf ...
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
One possible definition of the approximate string matching problem is the following: Given a pattern string =... and a text string = …, find a substring ′, = ′ … in T, which, of all substrings of T, has the smallest edit distance to the pattern P.