When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  3. Exact statistics - Wikipedia

    en.wikipedia.org/wiki/Exact_statistics

    Exact logistic regression: theory and examples. Statistics in Medicine, 14: 2143–2160. Mehta CR, Patel NR and Gray R. 1985. On computing an exact confidence interval for the common odds ratio in several 2 x 2 contingency tables. Journal of the American Statistical Association, 80(392): 969–973. Weerahandi, S. 1995.

  4. Category:Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Category:Logistic_regression

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  5. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters ( α i {\displaystyle \alpha _{i}} for each stratum and the vector β {\displaystyle {\boldsymbol {\beta ...

  6. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  7. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  8. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.