Search results
Results From The WOW.Com Content Network
An "interferogram" from a Fourier-transform spectrometer. This is the "raw data" which can be Fourier-transformed into an actual spectrum. The peak at the center is the ZPD position ("zero path difference"): Here, all the light passes through the interferometer because its two arms have equal length.
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
The spectra are plotted in units of log inverse reflectance (log 1/R) versus wavenumber. Alternative plots of Kubelka-Munk units can be used, which relate reflectance to concentration using a scaling factor. A reflectance standard is needed in order to quantify the reflectance of the sample because it cannot be determined directly. [2] [3]
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
There are two main approaches to two-dimensional spectroscopy, the Fourier-transform method, in which the data is collected in the time-domain and then Fourier-transformed to obtain a frequency-frequency 2D correlation spectrum, and the frequency domain approach in which all the data is collected directly in the frequency domain.
Older (.OPJ), but not newer (.OPJU), Origin project files can be read by the open-source LabPlot or SciDAVis software. The files can also be read by QtiPlot but only with a paid "Pro" version. Finally the liborigin [1] library can also read .OPJ files such as by using the opj2dat script, which exports the data tables contained in the file.
An interferogram from an FTIR measurement. The horizontal axis is the position of the mirror, and the vertical axis is the amount of light detected. This is the "raw data" which can be Fourier transformed to get the actual spectrum. Fourier transform infrared (FTIR) spectroscopy is a
7.5.1 2 December 2015: $399 (commercial), $199 (academic), Free (student) Proprietary: C/C++ based numerical computing and graphical plotting [1] DADiSP: DSP Development 1984 1987 6.7 B02 17 January 2017: $1995 (commercial), $129 (academic), Free (student) Proprietary: Numeric computations for science and engineering featuring a spreadsheet ...