Search results
Results From The WOW.Com Content Network
In cryptography, SHA-1 (Secure Hash Algorithm 1) is a hash function which takes an input and produces a 160-bit (20-byte) hash value known as a message digest – typically rendered as 40 hexadecimal digits. It was designed by the United States National Security Agency, and is a U.S. Federal Information Processing Standard. [3]
SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
Collisions against the full SHA-1 algorithm can be produced using the shattered attack and the hash function should be considered broken. SHA-1 produces a hash digest of 160 bits (20 bytes). Documents may refer to SHA-1 as just "SHA", even though this may conflict with the other Secure Hash Algorithms such as SHA-0, SHA-2, and SHA-3.
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
HMAC-SHA1 generation. In cryptography, an HMAC (sometimes expanded as either keyed-hash message authentication code or hash-based message authentication code) is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key.
In this way, the security is very hard to prove and the proof is usually not done. Only a few years ago [when?], one of the most popular hash functions, SHA-1, was shown to be less secure than its length suggested: collisions could be found in only 2 51 [2] tests, rather than the brute-force number of 2 80.
SHA-3 (Secure Hash Algorithm 3) is the latest [4] member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. [ 5 ] [ 6 ] [ 7 ] Although part of the same series of standards, SHA-3 is internally different from the MD5 -like structure of SHA-1 and SHA-2 .
In cryptography, the Merkle–Damgård construction or Merkle–Damgård hash function is a method of building collision-resistant cryptographic hash functions from collision-resistant one-way compression functions. [1]: 145 This construction was used in the design of many popular hash algorithms such as MD5, SHA-1, and SHA-2.