Ads
related to: union and intersection of events probability formula worksheet
Search results
Results From The WOW.Com Content Network
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one ...
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.
This is called the addition law of probability, or the sum rule. That is, the probability that an event in A or B will happen is the sum of the probability of an event in A and the probability of an event in B, minus the probability of an event that is in both A and B. The proof of this is as follows: Firstly,
The probability measure function must satisfy two simple requirements: First, the probability of a countable union of mutually exclusive events must be equal to the countable sum of the probabilities of each of these events. For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss ...
The probability that X n = 0 occurs for infinitely many n is equivalent to the probability of the intersection of infinitely many [X n = 0] events. The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr(X n = 0) converges to π 2 /6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma ...