When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0 vector on the th step, assuming that is a linear combination of , …,. If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1.

  3. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.

  4. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.

  5. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The last column can be fixed to any unit vector, and each choice gives a different copy of O(n) in O(n + 1); in this way O(n + 1) is a bundle over the unit sphere S n with fiber O(n). Similarly, SO( n ) is a subgroup of SO( n + 1) ; and any special orthogonal matrix can be generated by Givens plane rotations using an analogous procedure.

  6. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  7. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  8. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  9. Orthogonal array - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Array

    An orthogonal array is simple if it does not contain any repeated rows. (Subarrays of t columns may have repeated rows, as in the OA(18, 7, 3, 2) example pictured in this section.) An orthogonal array is linear if X is a finite field F q of order q (q a prime power) and the rows of the array form a subspace of the vector space (F q) k. [2]