Search results
Results From The WOW.Com Content Network
If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0 vector on the th step, assuming that is a linear combination of , …,. If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1.
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.
The last column can be fixed to any unit vector, and each choice gives a different copy of O(n) in O(n + 1); in this way O(n + 1) is a bundle over the unit sphere S n with fiber O(n). Similarly, SO( n ) is a subgroup of SO( n + 1) ; and any special orthogonal matrix can be generated by Givens plane rotations using an analogous procedure.
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
An orthogonal array is simple if it does not contain any repeated rows. (Subarrays of t columns may have repeated rows, as in the OA(18, 7, 3, 2) example pictured in this section.) An orthogonal array is linear if X is a finite field F q of order q (q a prime power) and the rows of the array form a subspace of the vector space (F q) k. [2]