Search results
Results From The WOW.Com Content Network
Jitter is often measured as a fraction of UI. For example, jitter of 0.01 UI is jitter that moves a signal edge by 1% of the UI duration. The widespread use of UI in jitter measurements comes from the need to apply the same requirements or results to cases of different symbol rates. This can be d
In electronics and telecommunications, jitter is the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal. In clock recovery applications it is called timing jitter. [1] Jitter is a significant, and usually undesired, factor in the design of almost all communications links.
It is used to specify clock stability requirements in telecommunications standards. [1] MTIE measurements can be used to detect clock instability that can cause data loss on a communications channel. [ 2 ]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
Crystal oscillators can be manufactured for oscillation over a wide range of frequencies, from a few kilohertz up to several hundred megahertz.Many applications call for a crystal oscillator frequency conveniently related to some other desired frequency, so hundreds of standard crystal frequencies are made in large quantities and stocked by electronics distributors.
Reference clock jitter translates directly to the output, but this jitter is a smaller percentage of the output period (by the ratio above). Since the maximum output frequency is limited to f c l k / 2 {\displaystyle f_{clk}/2} , the output phase noise at close-in offsets is always at least 6 dB below the reference clock phase noise.
Jitter is the undesired deviation from true periodicity of an assumed periodic signal in electronics and telecommunications, often in relation to a reference clock source. Jitter may be observed in characteristics such as the frequency of successive pulses, the signal amplitude , or phase of periodic signals.
The stored data are used to control phase and frequency variations, allowing the locked condition to be reproduced within specifications. Holdover begins when the clock output no longer reflects the influence of a connected external reference, or transition from it. Holdover terminates when the output of the clock reverts to locked mode condition.