Search results
Results From The WOW.Com Content Network
In mathematics, like terms are summands in a sum that differ only by a numerical factor. [1] Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients.
Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11] Two terms with the same indeterminates raised to the same powers are called "similar terms" or "like terms", and they can be combined, using the distributive law, into a single term whose coefficient is the sum of the ...
A similar problem, involving equating like terms rather than coefficients of like terms, arises if we wish to de-nest the nested radicals + to obtain an equivalent expression not involving a square root of an expression itself involving a square root, we can postulate the existence of rational parameters d, e such that
Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p. Graphing. End behaviour – Concavity – Orientation – Tangency point – Inflection point – Point where concavity changes.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
A polynomial expression is an expression built with scalars (elements of K), indeterminates, ... then one gets the canonical form by regrouping the like terms. ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or ...