Search results
Results From The WOW.Com Content Network
Thomson's model marks the moment when the development of atomic theory passed from chemists to physicists. While atomic theory was widely accepted by chemists by the end of the 19th century, physicists remained skeptical because the atomic model lacked any properties which concerned their field, such as electric charge, magnetic moment, volume, or absolute mass.
In 1904, Thomson suggested a model of the atom, hypothesizing that it was a sphere of positive matter within which electrostatic forces determined the positioning of the corpuscles. [1] To explain the overall neutral charge of the atom, he proposed that the corpuscles were distributed in a uniform sea of positive charge.
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
According to Thomson's model, all of the alpha particles should have passed through with negligible deflection. Rutherford deduced that the positive charge of the atom is not distributed throughout the atom's volume as Thomson believed, but is concentrated in a tiny nucleus at the center. This nucleus also carries most of the atom's mass.
Between 1870 and 1890 the vortex atom theory, which hypothesised that an atom was a vortex in the aether, was popular among British physicists and mathematicians. William Thomson, who became better known as Lord Kelvin, first conjectured that atoms might be vortices in the aether that pervades space. About 60 scientific papers were subsequently ...
The Rutherford model was devised by Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum pudding model of the atom was incorrect.
Again under Thomson's leadership, Rutherford worked on the conductive effects of X-rays on gases, which led to the discovery of the electron, the results first presented by Thomson in 1897. [ 29 ] [ 30 ] Hearing of Henri Becquerel 's experience with uranium , Rutherford started to explore its radioactivity , discovering two types that differed ...
In 1898, J. J. Thomson found that the positive charge of a hydrogen ion is equal to the negative charge of an electron, and these were then the smallest known charged particles. [22] Thomson later found that the positive charge in an atom is a positive multiple of an electron's negative charge. [23]