Search results
Results From The WOW.Com Content Network
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism, and it is a form of F-bounded quantification.
For example, the use of the << operator in C++ a << b shifts the bits in the variable a left by b bits if a and b are of an integer type, but if a is an output stream then the above code will attempt to write a b to the stream.
Templates in C++ provide a sophisticated mechanism for writing generic, polymorphic code (i.e. parametric polymorphism). In particular, through the curiously recurring template pattern, it is possible to implement a form of static polymorphism that closely mimics the syntax for overriding virtual functions.
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.
Since C++ does not support late binding, the virtual table in a C++ object cannot be modified at runtime, which limits the potential set of dispatch targets to a finite set chosen at compile time. Type overloading does not produce dynamic dispatch in C++ as the language considers the types of the message parameters part of the formal message name.
The use of templates as a metaprogramming technique requires two distinct operations: a template must be defined, and a defined template must be instantiated.The generic form of the generated source code is described in the template definition, and when the template is instantiated, the generic form in the template is used to generate a specific set of source code.
Examples are templates in C++, and generic programming in Fortran and other languages, in conjunction with function overloading (including operator overloading). Code is said to be monomorphised , with specific data types deduced and traced through the call graph , in order to instantiate specific versions of generic functions , and select ...