Search results
Results From The WOW.Com Content Network
Microfluidic Sanger sequencing is a lab-on-a-chip application for DNA sequencing, in which the Sanger sequencing steps (thermal cycling, sample purification, and capillary electrophoresis) are integrated on a wafer-scale chip using nanoliter-scale sample volumes. This technology generates long and accurate sequence reads, while obviating many ...
The first DNA sequencing methods were developed by Gilbert (1973) [8] and Sanger (1975). [9] Gilbert introduced a sequencing method based on chemical modification of DNA followed by cleavage at specific bases whereas Sanger's technique is based on dideoxynucleotide chain termination. The Sanger method became popular due to its increased ...
In contrast to directed sequencing, shotgun sequencing of DNA is a more rapid sequencing strategy. [6] There is a technique from the "old time" of genome sequencing. The underlying method for sequencing is the Sanger chain termination method which can have read lengths between 100 and 1000 basepairs (depending on the instruments used).
This page was last edited on 8 September 2022, at 18:52 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In the 1980s, low-throughput sequencing using the Sanger method was used to sequence random transcripts, producing expressed sequence tags (ESTs). [ 2 ] [ 14 ] [ 15 ] [ 16 ] The Sanger method of sequencing was predominant until the advent of high-throughput methods such as sequencing by synthesis (Solexa/Illumina).
Dideoxynucleotides are useful in the sequencing of DNA in combination with electrophoresis.A DNA sample that undergoes PCR (polymerase chain reaction) in a mixture containing all four deoxynucleotides and one dideoxynucleotide will produce strands of length equal to the position of each base of the type that complements the type having a dideoxynucleotide present.
In genetics, shotgun sequencing is a method used for sequencing random DNA strands. It is named by analogy with the rapidly expanding, quasi-random shot grouping of a shotgun. The chain-termination method of DNA sequencing ("Sanger sequencing") can only be used for short DNA strands of 100 to 1000 base pairs.
Most high-throughput, next generation sequencing platforms produce shorter read lengths compared to Sanger sequencing.These new platforms are able to generate large quantities of data in short periods of time, but until methods were developed for de novo assembly of large genomes from short read sequences, Sanger sequencing remained the standard method of creating a reference genome. [10]