Ads
related to: shannon's capacity theorem equation worksheet 2study.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a ...
The computational complexity of finding the Shannon capacity of such a channel remains ... This result is known as the Shannon–Hartley theorem. [11] When the SNR is ...
The channel capacity can be calculated from the physical properties of a channel; for a band-limited channel with Gaussian noise, using the Shannon–Hartley theorem. Simple schemes such as "send the message 3 times and use a best 2 out of 3 voting scheme if the copies differ" are inefficient error-correction methods, unable to asymptotically ...
The Shannon capacity of a graph G is bounded from below by α(G), and from above by ϑ(G). [5] In some cases, ϑ(G) and the Shannon capacity coincide; for instance, for the graph of a pentagon, both are equal to √ 5. However, there exist other graphs for which the Shannon capacity and the Lovász number differ. [6]
Shannon's main result, the noisy-channel coding theorem, showed that, in the limit of many channel uses, the rate of information that is asymptotically achievable is equal to the channel capacity, a quantity dependent merely on the statistics of the channel over which the messages are sent.
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise) This work is known for introducing the concepts of channel capacity as well as the noisy channel coding theorem. Shannon's article laid out the basic elements of communication:
For this calculation, it is conventional to define a normalized rate = / (), a bandwidth utilization parameter of bits per second per half hertz, or bits per dimension (a signal of bandwidth B can be encoded with dimensions, according to the Nyquist–Shannon sampling theorem). Making appropriate substitutions, the Shannon limit is:
Converse of Shannon's capacity theorem [ edit ] The converse of the capacity theorem essentially states that 1 − H ( p ) {\displaystyle 1-H(p)} is the best rate one can achieve over a binary symmetric channel.