Search results
Results From The WOW.Com Content Network
The calculation formula is: Rate Pressure Product (RPP) = Heart Rate (HR) * Systolic Blood Pressure (SBP) The units for the Heart Rate are beats per minute and for the Blood Pressure mmHg. Rate pressure product is a measure of the stress put on the cardiac muscle based on the number of times it needs to beat per minute (HR) and the arterial ...
Blood pressure is one of the vital signs—together with respiratory rate, heart rate, oxygen saturation, and body temperature—that healthcare professionals use in evaluating a patient's health. Normal resting blood pressure in an adult is approximately 120 millimetres of mercury (16 kPa) systolic over 80 millimetres of mercury (11 kPa ...
Mean arterial pressure in relation to systolic and diastolic pressure in blood vessels. While MAP can only be measured directly by invasive monitoring, it can be estimated by using a formula in which the lower (diastolic) blood pressure is doubled and added to the higher (systolic) blood pressure and that composite sum then is divided by 3 to estimate MAP.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
With a temperature lapse rate of −6.5 °C (-11.7 °F) per km (roughly −2 °C (-3.6 °F) per 1,000 ft), the table interpolates to the standard mean sea level values of 15 °C (59 °F) temperature, 101,325 pascals (14.6959 psi) (1 atm) pressure, and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft).
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
A substance is characterized by a burn rate vs. pressure chart and burn rate vs temperature chart. Higher burn rate than the speed of sound in the material (usually several km/s): "detonation" A few meters per second: "deflagration" A few centimeters per second: "burn" or "smolder" 0.01 mm/s to 100 mm/s: "decomposing rapidly" to characterise it.
Compressor characteristic is a mathematical curve that shows the behaviour of a fluid going through a dynamic compressor.It shows changes in fluid pressure, temperature, entropy, flow rate etc.) with the compressor operating at different speeds.