Ad
related to: immersion formula mathematics- Small Business Discount
15% Tuition Discount For
Small Business Owners & Employees.
- Programs
Online Degrees Available
From Associate To Postgraduate.
- Why Liberty?
Prepare For The Career You Want
With A Faith Based Education
- Military Tuition Discount
Tuition Discounts For
Military, Veterans, & Spouses.
- Small Business Discount
Search results
Results From The WOW.Com Content Network
A mathematical rose with k petals is an immersion of the circle in the plane with a single k-tuple point; k can be any odd number, but if even must be a multiple of 4, so the figure 8, with k = 2, is not a rose. The Klein bottle, and all other non-orientable closed surfaces, can be immersed in 3-space but not embedded.
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
The notion of a closed immersion is local in the sense that f is a closed immersion if and only if for some (equivalently every) open covering = the induced map : is a closed immersion. [ 5 ] [ 6 ] If the composition Z → Y → X {\displaystyle Z\to Y\to X} is a closed immersion and Y → X {\displaystyle Y\to X} is separated , then Z → Y ...
An animation of Boy's surface. In geometry, Boy's surface is an immersion of the real projective plane in three-dimensional space.It was discovered in 1901 by the German mathematician Werner Boy, who had been tasked by his doctoral thesis advisor David Hilbert to prove that the projective plane could not be immersed in three-dimensional space.
In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas.
Note that the formulae given below are ... is a twice-differentiable immersion. Recall that the second ... [Results in Mathematics and Related Areas (3)], 10. ...
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]