Search results
Results From The WOW.Com Content Network
The extended number line is often useful to describe the behavior of a function when either the argument or the function value gets "infinitely large" in some sense. For example, consider the function f {\displaystyle f} defined by
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain . Real-valued functions of a real variable (commonly called real functions ) and real-valued functions of several real variables are the main object of study of calculus and ...
In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...
In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity.An extended real-valued function is upper (respectively, lower) semicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher (respectively, lower) than ().
Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...
The measuring function is a non-negative extended real-valued function defined for all subsets of . Translation invariance: For any set A {\displaystyle A} and any real x {\displaystyle x} , the sets A {\displaystyle A} and A + x = { a + x : a ∈ A } {\displaystyle A+x=\{a+x:a\in A\}} have the same measure