Search results
Results From The WOW.Com Content Network
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...
For the situation where the asperities on the two surfaces have a Gaussian height distribution and the peaks can be assumed to be spherical, [31] the average contact pressure is sufficient to cause yield when = where is the uniaxial yield stress and is the indentation hardness. [1]
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
On a stress-strain curve, the flow stress can be found anywhere within the plastic regime; more explicitly, a flow stress can be found for any value of strain between and including yield point and excluding fracture (): <.
The classical stress-strain model for a metal. The material is presumed to fail if stress exceeds the yield stress. The yield stress of a material is often only known to a certain precision, meaning that there is an uncertainty and therefore a probability distribution associated with the known value. [6] [8] Let the probability distribution ...
Figure 1: View of Drucker–Prager yield surface in 3D space of principal stresses for =, = The Drucker–Prager yield criterion [1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils.