When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The simplified form of Bernoulli's equation can be summarized in the following memorable word equation: [1]: § 3.5 Static pressure + Dynamic pressure = Total pressure. Every point in a steadily flowing fluid, regardless of the fluid speed at that point, has its own unique static pressure p and dynamic pressure q .

  3. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    Using Bernoulli's equation, the pressure coefficient can be further simplified for potential flows (inviscid, and steady): [3] | = = where: is the flow speed at the point at which pressure coefficient is being evaluated

  4. Static pressure - Wikipedia

    en.wikipedia.org/wiki/Static_pressure

    This simplified form of Bernoulli's equation is fundamental to an understanding of the design and operation of ships, low speed aircraft, and airspeed indicators for low speed aircraft – that is aircraft whose maximum speed will be less than about 30% of the speed of sound.

  5. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    A solution of the potential equation directly determines only the velocity field. The pressure field is deduced from the velocity field through Bernoulli's equation. Comparison of a non-lifting flow pattern around an airfoil; and a lifting flow pattern consistent with the Kutta condition in which the flow leaves the trailing edge smoothly

  6. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  7. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    Eliminating viscosity allows the Navier–Stokes equations to be simplified into the Euler equations. The integration of the Euler equations along a streamline in an inviscid flow yields Bernoulli's equation. When, in addition to being inviscid, the flow is irrotational everywhere, Bernoulli's equation can completely describe the flow everywhere.

  8. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations, in their full and simplified forms, ... A special case of the fundamental equation of hydraulics is the Bernoulli's equation.

  9. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Eq.2b is a fundamental equation for most of discrete models. The equation can be solved by recurrence and iteration method for a manifold. It is clear that Eq.2a is limiting case of Eq.2b when ∆X → 0. Eq.2a is simplified to Eq.1 Bernoulli equation without the potential energy term when β=1 whilst Eq.2 is simplified to Kee's model [6] when β=0