When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    A prime number is a natural number that has no natural number divisors other than the number 1 and itself.. To find all the prime numbers less than or equal to a given integer N, a sieve algorithm examines a set of candidates in the range 2, 3, …, N, and eliminates those that are not prime, leaving the primes at the end.

  5. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.

  6. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  7. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  8. 2,147,483,647 - Wikipedia

    en.wikipedia.org/wiki/2,147,483,647

    By 1772, Leonhard Euler had proven that 2,147,483,647 is a prime. The number 2147483647 is the eighth Mersenne prime, equal to 2 31 − 1. It is one of only four known double Mersenne primes. [1] The primality of this number was proven by Leonhard Euler, who reported the proof in a letter to Daniel Bernoulli written in 1772. [2]

  9. Circular prime - Wikipedia

    en.wikipedia.org/wiki/Circular_prime

    A circular prime is a prime number with the property that the number generated at each intermediate step when cyclically permuting its (base 10) digits will be prime. [ 1 ] [ 2 ] For example, 1193 is a circular prime, since 1931, 9311 and 3119 all are also prime. [ 3 ]