When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    The linear dependency of a sequence of vectors does not depend of the order of the terms in the sequence. This allows defining linear independence for a finite set of vectors: A finite set of vectors is linearly independent if the sequence obtained by ordering them is linearly independent. In other words, one has the following result that is ...

  3. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  4. Matroid - Wikipedia

    en.wikipedia.org/wiki/Matroid

    In combinatorics, a matroid / ˈ m eɪ t r ɔɪ d / is a structure that abstracts and generalizes the notion of linear independence in vector spaces.There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats.

  5. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero. It is named after Jørgen Pedersen Gram .

  6. Steinitz exchange lemma - Wikipedia

    en.wikipedia.org/wiki/Steinitz_exchange_lemma

    The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite-dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz .

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set. For linear equations, logical independence is the same as linear independence. The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent. For example ...

  8. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  9. Alternant matrix - Wikipedia

    en.wikipedia.org/wiki/Alternant_matrix

    The alternant can be used to check the linear independence of the functions ,, …, in function space.For example, let () = ⁡ (), = ⁡ and choose =, = /.Then the alternant is the matrix [] and the alternant determinant is .