Search results
Results From The WOW.Com Content Network
Selective non-catalytic reduction (SNCR) is a method to lessen nitrogen oxide emissions in conventional power plants that burn biomass, waste and coal.The process involves injecting either ammonia or urea into the firebox of the boiler at a location where the flue gas is between 1,400 and 2,000 °F (760 and 1,090 °C) to react with the nitrogen oxides formed in the combustion process.
Selective catalytic reduction (SCR) means converting nitrogen oxides, also referred to as NO x with the aid of a catalyst into diatomic nitrogen (N 2), and water (H 2 O). A reductant, typically anhydrous ammonia (NH 3), aqueous ammonia (NH 4 OH), or a urea (CO(NH 2) 2) solution, is added to a stream of flue or exhaust gas and is reacted onto a ...
The sulfur is recovered as concentrated sulfuric acid and the nitrogen oxides are reduced to free nitrogen. The process is based on the well-known wet sulfuric acid process (WSA), a process for recovering sulfur from various process gasses in the form of commercial quality sulfuric acid (H 2 SO 4 ).
Diagram depicting the sources and cycles of acid rain precipitation. Freshwater acidification occurs when acidic inputs enter a body of fresh water through the weathering of rocks, invasion of acidifying gas (e.g. carbon dioxide), or by the reduction of acid anions, like sulfate and nitrate within a lake, pond, or reservoir. [1]
The 1999 Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level Ozone (known as the Multi-effect Protocol or the Gothenburg Protocol) is a multi-pollutant protocol designed to reduce acidification, eutrophication and ground-level ozone by setting emissions ceilings for sulphur dioxide, nitrogen oxides, volatile organic ...
These measures aim to reduce coal's impact on human health and the environment. The combustion of coal releases diverse chemicals into the air. The main products are water and carbon dioxide, just like the combustion of petroleum. Also released are sulfur dioxide and nitrogen oxides, as well as some mercury
The SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) wastewater treatment process is a combination of two already used nitrogen removing reactions. One process utilizes fast growing nitrifiers utilizing nitrification of ammonia to nitrite and Anammox which is the denitrification of nitrite to atmospheric nitrogen ...
The lighter isotope of nitrogen, 14 N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15 N, in the residual matter. This selectivity leads to the enrichment of 14 N in the biomass compared to 15 N. [ 27 ] Moreover, the relative abundance of 14 N can be analyzed to distinguish denitrification apart from other ...