When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Charged particle - Wikipedia

    en.wikipedia.org/wiki/Charged_particle

    In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. [1] Some composite particles like protons are charged particles. An ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons are also charged particles.

  3. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    The charge of an antiparticle equals that of the corresponding particle, but with opposite sign. The electric charge of a macroscopic object is the sum of the electric charges of the particles that it is made up of.

  4. Charged current - Wikipedia

    en.wikipedia.org/wiki/Charged_current

    Of these, the W-boson has either a positive or negative electric charge, and mediates neutrino absorption and emission by or with an electrically charged particle. During these processes, the W-boson induces electron or positron emission or absorption, or changing the flavour of a quark as well as its electrical charge, such as in beta decay or ...

  5. List of particles - Wikipedia

    en.wikipedia.org/wiki/List_of_particles

    Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature.

  6. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  7. Paradox of radiation of charged particles in a gravitational ...

    en.wikipedia.org/wiki/Paradox_of_radiation_of...

    Putting together these two basic facts of general relativity and electrodynamics, we seem to encounter a paradox. For if we dropped a neutral particle and a charged particle together in a gravitational field, the charged particle should begin to radiate as it is accelerated under gravity, thereby losing energy and slowing relative to the neutral particle.

  8. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Lorentz force F on a charged particle (of charge q) in motion (instantaneous velocity v). The E field and B field vary in space and time. The force F acting on a particle of electric charge q with instantaneous velocity v, due to an external electric field E and magnetic field B, is given by (SI definition of quantities [1]): [12]

  9. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    Electric field work is the work performed by an electric field on a charged particle in its vicinity. The particle located experiences an interaction with the electric field. The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those