Ad
related to: bicarbonate buffer pka
Search results
Results From The WOW.Com Content Network
The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3), bicarbonate ion (HCO − 3 ), and carbon dioxide (CO 2 ) in order to maintain pH in the blood and duodenum , among other tissues, to support proper metabolic function. [ 1 ]
Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. In nature, there are many living systems that use buffering for pH regulation. For example, the bicarbonate buffering system is used to regulate the pH of blood, and bicarbonate also acts as a buffer in the ocean.
The bicarbonate ion (hydrogencarbonate ion) is an anion with the empirical formula HCO − 3 and a molecular mass of 61.01 daltons; it consists of one central carbon atom surrounded by three oxygen atoms in a trigonal planar arrangement, with a hydrogen atom attached to one of the oxygens.
The ocean contains a natural buffer system to maintain a pH between 8.1 and 8.3. [11] The oceans buffer system is known as the carbonate buffer system. [12] The carbonate buffer system is a series of reactions that uses carbonate as a buffer to convert into bicarbonate. [12]
Important buffer solutions include MOPS, which provides a solution with pH 7.2, and tricine, which is used in gel electrophoresis. [69] [70] Buffering is an essential part of acid base physiology including acid–base homeostasis, [71] and is key to understanding disorders such as acid–base disorder.
Carbonic acid is a chemical compound with the chemical formula H 2 C O 3.The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature.
Secondly, the pH (at equilibrium) can be calculated from an individual buffer system regardless of other buffers present. That is, in vivo, knowing the concentration of pCO 2 (weak acid) and bicarbonate (conjugate base) and the pKa of that buffer system, the pH can be calculated regardless of the presence of other contributing buffers.
Buffers typically consist of a pair of compounds in solution, one of which is a weak acid and the other a weak base. [13] The most abundant buffer in the ECF consists of a solution of carbonic acid (H 2 CO 3), and the bicarbonate (HCO − 3) salt of, usually, sodium (Na +). [5] Thus, when there is an excess of OH −