When.com Web Search

  1. Ad

    related to: maxwell's equations for electromagnetism and electricity

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Curvature of spacetime affects electrodynamics. An electromagnetic field having energy and momentum also generates curvature in spacetime. Maxwell's equations in curved spacetime can be obtained by replacing the derivatives in the equations in flat spacetime with covariant derivatives. (Whether this is the appropriate generalization requires ...

  4. A Dynamical Theory of the Electromagnetic Field - Wikipedia

    en.wikipedia.org/wiki/A_Dynamical_Theory_of_the...

    The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws. Maxwell's derivation of the electromagnetic wave equation has been replaced in modern physics by a much less cumbersome method ...

  5. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    The electromagnetic field admits a coordinate-independent geometric description, and Maxwell's equations expressed in terms of these geometric objects are the same in any spacetime, curved or not. Also, the same modifications are made to the equations of flat Minkowski space when using local coordinates that are not rectilinear. For example ...

  6. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  7. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    Maxwell's equations can be written in tensor form, generally viewed by physicists as a more elegant means of expressing physical laws. The behavior of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or electrodynamics (electromagnetic fields), is governed by Maxwell's equations. In the vector field formalism ...

  8. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  9. Magnetic vector potential - Wikipedia

    en.wikipedia.org/wiki/Magnetic_vector_potential

    The solutions of Maxwell's equations in the Lorenz gauge (see Feynman [5] and Jackson [7]) with the boundary condition that both potentials go to zero sufficiently fast as they approach infinity are called the retarded potentials, which are the magnetic vector potential (,) and the electric scalar potential (,) due to a current distribution of ...