When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Bézout's identity provides yet another definition of the greatest common divisor g of two numbers a and b. [12] Consider the set of all numbers ua + vb, where u and v are any two integers. Since a and b are both divisible by g, every number in the set is divisible by g. In other words, every number of the set is an integer multiple of g.

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted (,).

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    A third difference is that, in the polynomial case, the greatest common divisor is defined only up to the multiplication by a non zero constant. There are several ways to define unambiguously a greatest common divisor. In mathematics, it is common to require that the greatest common divisor be a monic polynomial.

  6. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

  7. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...

  8. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    A fraction that is reducible can be reduced by dividing both the numerator and denominator by a common factor. It can be fully reduced to lowest terms if both are divided by their greatest common divisor. [5] In order to find the greatest common divisor, the Euclidean algorithm or prime factorization can be used. The Euclidean algorithm is ...

  9. Lehmer's GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Lehmer's_GCD_algorithm

    Say we want to obtain the GCD of the two integers a and b. Let a ≥ b. If b contains only one digit (in the chosen base, say β = 1000 or β = 2 32), use some other method, such as the Euclidean algorithm, to obtain the result. If a and b differ in the length of digits, perform a division so that a and b are equal in length, with length equal ...