When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = a⋅p + b⋅q, where p and q are integers. This expression is called Bézout's identity. Numbers p and q like this can be computed with the extended Euclidean algorithm.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...

  4. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd(p, q) = 1 means that the invertible constants are the only common divisors.

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that + = (,).

  6. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  7. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Here the greatest common divisor of 0 and 0 is taken to be 0.The integers x and y are called Bézout coefficients for (a, b); they are not unique.A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that | x | ≤ | b/d | and | y | ≤ | a/d |; equality occurs only if one of a and b is a multiple ...

  8. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    A fast way to determine whether two numbers are coprime is given by the Euclidean algorithm and its faster variants such as binary GCD algorithm or Lehmer's GCD algorithm. The number of integers coprime with a positive integer n, between 1 and n, is given by Euler's totient function, also known as Euler's phi function, φ(n).

  9. List of mathematical abbreviations - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    gcd – greatest common divisor of two numbers. (Also written as hcf.) gd – Gudermannian function. GF – Galois field. GF – generating function. GL – general linear group. G.M. – geometric mean. glb – greatest lower bound. (Also written as inf.) G.P. – geometric progression. grad – gradient of a function.