When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Padovan cuboid spiral - Wikipedia

    en.wikipedia.org/wiki/Padovan_cuboid_spiral

    [1] The cuboids are added in a sequence that adds to the face in the positive y direction, then the positive x direction, then the positive z direction. This is followed by cuboids added in the negative y, negative x and negative z directions. Each new cuboid added has a length and width that matches the length and width of the face being added to.

  3. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...

  4. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    [1] [2] General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. [1] [3] Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram. Rhombohedron is a cuboid with six rhombus faces.

  5. Minimum bounding box - Wikipedia

    en.wikipedia.org/wiki/Minimum_bounding_box

    A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.

  6. Hyperrectangle - Wikipedia

    en.wikipedia.org/wiki/Hyperrectangle

    A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.

  7. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [15] [16] de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]

  8. Minimum bounding box algorithms - Wikipedia

    en.wikipedia.org/wiki/Minimum_bounding_box...

    The minimal enclosing box of the regular tetrahedron is a cube, with side length 1/ √ 2 that of the tetrahedron; for instance, a regular tetrahedron with side length2 fits into a unit cube, with the tetrahedron's vertices lying at the vertices (0,0,0), (0,1,1), (1,0,1) and (1,1,0) of the unit cube. [7]

  9. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  1. Related searches cuboid length width and height of a box given 2 x y dy dx 1 e y x 5 y equals 2 x minus 1 y 2x 1

    rectangular cuboidcuboid polyhedron
    cuboid definition geometry