When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve .

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  4. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    An everywhere differentiable function g : R → R is Lipschitz continuous (with K = sup |g′(x)|) if and only if it has a bounded first derivative; one direction follows from the mean value theorem. In particular, any continuously differentiable function is locally Lipschitz, as continuous functions are locally bounded so its gradient is ...

  6. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be ...

  7. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    A function of class is a function of smoothness at least k; that is, a function of class is a function that has a k th derivative that is continuous in its domain. A function of class or -function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that ...

  8. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    Any continuous function on the interval [,] is also uniformly continuous, since [,] is a compact set. If a function is differentiable on an open interval and its derivative is bounded, then the function is uniformly continuous on that interval.

  9. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    If an absolutely continuous function is defined on a bounded closed interval and is nowhere zero then its reciprocal is absolutely continuous. [5] Every absolutely continuous function (over a compact interval) is uniformly continuous and, therefore, continuous. Every (globally) Lipschitz-continuous function is absolutely continuous. [6] If f ...