When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    Thomae's function is discontinuous at every non-zero rational point, but continuous at every irrational point. One easily sees that those discontinuities are all removable. By the first paragraph, there does not exist a function that is continuous at every rational point, but discontinuous at every irrational point.

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function . The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions.

  4. Developmental stage theories - Wikipedia

    en.wikipedia.org/wiki/Developmental_stage_theories

    The development of the human mind is complex and a debated subject, and may take place in a continuous or discontinuous fashion. [4] Continuous development, like the height of a child, is measurable and quantitative, while discontinuous development is qualitative, like hair or skin color, where those traits fall only under a few specific phenotypes. [5]

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

  6. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  7. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    An example of non-compact is the real line, which allows the discontinuous function with closed graph () = {,. Also, closed linear operators in functional analysis (linear operators with closed graphs) are typically not continuous.

  8. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/wiki/Continuous_or_discrete...

    In continuous-time dynamics, the variable time is treated as continuous, and the equation describing the evolution of some variable over time is a differential equation. [7] The instantaneous rate of change is a well-defined concept that takes the ratio of the change in the dependent variable to the independent variable at a specific instant.

  9. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).