When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The three quartiles, resulting in four data divisions, are as follows: The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point.

  3. Percentile - Wikipedia

    en.wikipedia.org/wiki/Percentile

    The 25th percentile is also known as the first quartile (Q 1), the 50th percentile as the median or second quartile (Q 2), and the 75th percentile as the third quartile (Q 3). For example, the 50th percentile (median) is the score below (or at or below, depending on the definition) which 50% of the scores in the distribution are found.

  4. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the

  5. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    Splitting the observations either side of the median gives two groups of four observations. The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63.

  6. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:

  7. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    This is the minimum value of the set, so the zeroth quartile in this example would be 3. 3 First quartile The rank of the first quartile is 10×(1/4) = 2.5, which rounds up to 3, meaning that 3 is the rank in the population (from least to greatest values) at which approximately 1/4 of the values are less than the value of the first quartile.

  8. Percentile rank - Wikipedia

    en.wikipedia.org/wiki/Percentile_rank

    Percentile ranks (PRs or percentiles) compared to Normal curve equivalents (NCEs). In educational measurement, a range of percentile ranks, often appearing on a score report, shows the range within which the test taker's "true" percentile rank probably occurs.

  9. Seven-number summary - Wikipedia

    en.wikipedia.org/wiki/Seven-number_summary

    The middle three values – the lower quartile, median, and upper quartile – are the usual statistics from the five-number summary and are the standard values for the box in a box plot.