Ads
related to: 560 subarray sum equals k leetcode worksheet 3
Search results
Results From The WOW.Com Content Network
In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10]. In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers.
Max-sum MSSP is a special case of MKP in which the value of each item equals its weight. The knapsack problem is a special case of MKP in which m=1. The subset-sum problem is a special case of MKP in which both the value of each item equals its weight, and m=1. The MKP has a Polynomial-time approximation scheme. [6]
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
Comparison of two revisions of an example file, based on their longest common subsequence (black) A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences).
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...