Search results
Results From The WOW.Com Content Network
Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [ 2 ] navigation of mobile robots , [ 3 ] or edge detection in images.
PatchMatch is an algorithm used to quickly find correspondences (or matches) between small square regions (or patches) of an image. It has various applications in image editing, such as reshuffling or removing objects from images or altering their aspect ratios without cropping or noticeably stretching them
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition , the match usually has to be exact: "either it will or will not be a match."
The template matching is a "brute force" implementation of this approach. [1] The concept is first create a set of templates, and then look for small parts in the image match with a template. This method is computationally high and inefficient. It keeps an entire templates list during the whole process and the number of combinations is ...
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
In signal processing, the output of the matched filter is given by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. [1] [2] This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template.
Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...