Search results
Results From The WOW.Com Content Network
A graph can only contain a perfect matching when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c ...
A perfect matching can only occur when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, part (c) shows a near-perfect matching.
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset.
The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.
In this case, the dual graph is cubic and bridgeless, so by Petersen's theorem it has a matching, which corresponds in the original graph to a pairing of adjacent triangle faces. Each pair of triangles gives a path of length three that includes the edge connecting the triangles together with two of the four remaining triangle edges.
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...
The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...
An graph (or a component) with an odd number of vertices cannot have a perfect matching, since there will always be a vertex left alone. The goal is to characterize all graphs that do not have a perfect matching. Start with the most obvious case of a graph without a perfect matching: a graph with an odd number of vertices.