Search results
Results From The WOW.Com Content Network
In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components (the colors of the rainbow). Different wavelengths (colors) of light will be deflected by the prism at different angles. [ 1 ]
The rainbow hologram (also known as Benton hologram) is a type of hologram that was invented in 1968 by Dr. Stephen A. Benton at Polaroid Corporation (later MIT). [1] Rainbow holograms are designed to be viewed under white light illumination, rather than laser light which was required before this.
A familiar dispersive prism. An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular ...
Rainbows are formed by dispersion of light, in which the refraction angle depends on the light's frequency. Refraction is also responsible for rainbows and for the splitting of white light into a rainbow-spectrum as it passes through a glass prism. Glass and water have higher refractive indexes than air.
The light then passed through a prism (in hand-held spectroscopes, usually an Amici prism) that refracted the beam into a spectrum because different wavelengths were refracted different amounts due to dispersion. This image was then viewed through a tube with a scale that was transposed upon the spectral image, enabling its direct measurement.
Optics is part of everyday life. The ubiquity of visual systems in biology indicates the central role optics plays as the science of one of the five senses. Many people benefit from eyeglasses or contact lenses, and optics are integral to the functioning of many consumer goods including cameras. Rainbows and mirages are examples of optical ...
Porro prisms are most often used in pairs, forming a double Porro prism. A second prism rotated 90° with respect to the first, is placed such that light will traverse both prisms. The net effect of the prism system is a beam parallel to but displaced from its original direction, with the image rotated 180°.
Modern spectroscopy in the Western world started in the 17th century. New designs in optics, specifically prisms, enabled systematic observations of the solar spectrum. Isaac Newton first applied the word spectrum to describe the rainbow of colors that combine to form white light.