Search results
Results From The WOW.Com Content Network
In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase. The concentration of a vapor in contact with its liquid, especially at equilibrium , is often expressed in terms of vapor pressure , which will be a partial pressure (a ...
The equilibrium conditions are shown as curves on a curved surface in 3D with areas for solid, liquid, and vapor phases and areas where solid and liquid, solid and vapor, or liquid and vapor coexist in equilibrium. A line on the surface called a triple line is where solid, liquid and vapor can all coexist in equilibrium. The critical point ...
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
A McCabe–Thiele diagram for the distillation of a binary (two-component) feed is constructed using the vapor-liquid equilibrium (VLE) data—which is how vapor is concentrated when in contact with its liquid form—for the component with the lower boiling point. Figure 1: Typical McCabe–Thiele diagram for distillation of a binary feed
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat ...
The solid/liquid/vapor triple point of liquid water, ice I h and water vapor in the lower left portion of a water phase diagram. The temperature and pressure at which ordinary solid, liquid, and gaseous water coexist in equilibrium is a triple point of water.
This type of phase separation is known as liquid-liquid equilibrium. Colloids are formed by phase separation, though not all phase separations forms colloids - for example oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension.