Search results
Results From The WOW.Com Content Network
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
This factorization is also unique up to the choice of a sign. For example, + + + = + + + is a factorization into content and primitive part. Gauss proved that the product of two primitive polynomials is also primitive (Gauss's lemma). This implies that a primitive polynomial is irreducible over the rationals if and only if it is irreducible ...
Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...
While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step [8] and stated for the first time the fundamental theorem of arithmetic. [9] Article 16 of Gauss's Disquisitiones Arithmeticae is an early modern statement and proof employing modular arithmetic. [1]
If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive. If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose Q † = Q − 1 {\displaystyle Q^{\dagger }=Q^{-1}} ).
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that: [1] The class E is exactly the class of morphisms having the left lifting property with respect to each morphism in M. The class M is exactly the class of morphisms having the right lifting property with respect to each morphism in E.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...