Search results
Results From The WOW.Com Content Network
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
It is used in assessing the osmotic strength of colloids as well as solutions. [2] The freezing point depression osmometer operates by using the solution's freezing point to determine the concentration of the solution. It uses a nanoliter nanometer, a device that facilitates the establishment of the solution's melting and freezing points ...
Even if the PDF can be found, finding the moments (above) can be difficult. 4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean.
Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.
The Westgard rules are a set of statistical patterns, each being unlikely to occur by random variability, thereby raising a suspicion of faulty accuracy or precision of the measurement system. They are used for laboratory quality control , in "runs" consisting of measurements of multiple samples.
There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...
In NMR spectroscopy, e.g. of the nuclei 1 H, 13 C and 29 Si, frequencies depend on the magnetic field, which is not the same across all experiments. Therefore, frequencies are reported as relative differences to tetramethylsilane (TMS), an internal standard that George Tiers proposed in 1958 and that the International Union of Pure and Applied Chemistry has since endorsed.