Search results
Results From The WOW.Com Content Network
This example shows 4 blue edges of the rectangle, and two green diagonals, all being diagonal of the cuboid rectangular faces. In spherical geometry, a spherical rectangle is a figure whose four edges are great circle arcs which meet at equal angles greater than 90°. Opposite arcs are equal in length.
Assume a golden rectangle has been constructed as indicated above, with height 1, length and diagonal length +. The triangles on the diagonal have altitudes 1 / 1 + φ − 2 ; {\displaystyle 1/{\sqrt {1+\varphi ^{-2}}}\,;} each perpendicular foot divides the diagonal in ratio φ 2 . {\displaystyle \varphi ^{2}.}
A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.
The diagonals of a square are (about 1.414) times the length of a side of the square. This value, known as the square root of 2 or Pythagoras' constant, [1] was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles.
If the quadrilateral is rectangle, then equation simplifies further since now the two diagonals are of equal length as well: 2 a 2 + 2 b 2 = 2 e 2 {\displaystyle 2a^{2}+2b^{2}=2e^{2}} Dividing by 2 yields the Euler–Pythagoras theorem:
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length . In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal.
The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length. The figure formed by joining the midpoints of the sides of a rhombus is a rectangle , and vice versa.
YBC 7289 is a Babylonian clay tablet notable for containing an accurate sexagesimal approximation to the square root of 2, the length of the diagonal of a unit square. This number is given to the equivalent of six decimal digits, "the greatest known computational accuracy ... in the ancient world". [ 1 ]