Ad
related to: diagonal of rectangle calculator
Search results
Results From The WOW.Com Content Network
A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero.
For a square matrix, the diagonal (or main diagonal or principal diagonal) is the diagonal line of entries running from the top-left corner to the bottom-right corner. [ 1 ] [ 2 ] [ 3 ] For a matrix A {\displaystyle A} with row index specified by i {\displaystyle i} and column index specified by j {\displaystyle j} , these would be entries A i ...
A perfect parallelepiped is a parallelepiped with integer-length edges, face diagonals, and space diagonals. In 2009, dozens of perfect parallelepipeds were shown to exist, [3] answering an open question of Richard Guy. One example has edges 271, 106, and 103, minor face diagonals 101, 266, and 255, major face diagonals 183, 312, and 323, and ...
The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.
Placing the point P on any of the four vertices of the rectangle yields the square of the diagonal of the rectangle being equal to the sum of the squares of the width and length of the rectangle, which is the Pythagorean theorem.
In a similar vein, a matrix which is both normal (meaning A * A = AA *, where A * is the conjugate transpose) and triangular is also diagonal. This can be seen by looking at the diagonal entries of A * A and AA *. The determinant and permanent of a triangular matrix equal the product of the diagonal entries, as can be checked by direct computation.