When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Any ellipsoid is the image of the unit sphere under some affine transformation, and any plane is the image of some other plane under the same transformation. So, because affine transformations map circles to ellipses, the intersection of a plane with an ellipsoid is an ellipse or a single point, or is empty. [8] Obviously, spheroids contain ...

  3. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    The longitude on the ellipsoid and the distance along the geodesic are then given in terms of the longitude on the sphere and the arc length along the great circle by simple integrals. Bessel and Helmert gave rapidly converging series for these integrals, which allow the geodesic to be computed with arbitrary accuracy.

  4. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  5. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...

  6. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.

  7. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    Legendre (1811, p. 180) pointed out that the equation for s is the same as the equation for the arc on an ellipse with semi-axes b √ 1 + e′ 2 cos 2 α 0 and b. In order to express the equation for λ in terms of σ, we write = ⁡ ⁡,

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...

  9. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = ⁡ ⁡, = ⁡ ⁡, = ⁡. Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.