Search results
Results From The WOW.Com Content Network
The sampling theorem introduces the concept of a sample rate that is sufficient for perfect fidelity for the class of functions that are band-limited to a given bandwidth, such that no actual information is lost in the sampling process. It expresses the sufficient sample rate in terms of the bandwidth for the class of functions.
Norton's theorem was published in November 1926 by Hans Ferdinand Mayer and independently discovered by Edward Lawry Norton who presented it in an internal Bell Labs technical report, dated November 1926. Nyquist–Shannon sampling theorem. The name Nyquist–Shannon sampling theorem honours Harry Nyquist and Claude Shannon, but the theorem was ...
In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values ...
An early breakthrough in signal processing was the Nyquist–Shannon sampling theorem. It states that if a real signal's highest frequency is less than half of the sampling rate, then the signal can be reconstructed perfectly by means of sinc interpolation. The main idea is that with prior knowledge about constraints on the signal's frequencies ...
Nonuniform sampling is based on Lagrange interpolation and the relationship between itself and the (uniform) sampling theorem. Nonuniform sampling is a generalisation of the Whittaker–Shannon–Kotelnikov (WSK) sampling theorem. The sampling theory of Shannon can be generalized for the case of nonuniform samples, that is, samples not taken ...
Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.
A simple illustration of aliasing can be obtained by studying low-resolution images. A gray-scale image can be interpreted as a function in two-dimensional space. An example of aliasing is shown in the images of brick patterns in Figure 5. The image shows the effects of aliasing when the sampling theorem's condition is not satisfied.
Let F be any sampling method, i.e. a linear map from the Hilbert space of square-integrable functions to complex space . In our example, the vector space of sampled signals C n {\displaystyle \mathbb {C} ^{n}} is n -dimensional complex space.