When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conical coordinates - Wikipedia

    en.wikipedia.org/wiki/Conical_coordinates

    The elliptic cones intersect the sphere in spherical conics. Conical coordinates , sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r ) and by two families of perpendicular elliptic cones, aligned along the z - and x ...

  3. Spherical conic - Wikipedia

    en.wikipedia.org/wiki/Spherical_conic

    In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section ( ellipse , parabola , or hyperbola ) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...

  4. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by θ ∈ [ 0 , π ] {\displaystyle \theta \in [0,\pi ]} : it is the angle between the z -axis and the radial vector connecting the origin to the point in ...

  5. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form A x 2 + B x y + C y 2 + D x + E y + F = 0 with A , B , C not all zero. {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with ...

  7. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.

  8. Problems and Theorems in Analysis - Wikipedia

    en.wikipedia.org/wiki/Problems_and_Theorems_in...

    Problems and Theorems in Analysis (German: Aufgaben und Lehrsätze aus der Analysis) is a two-volume problem book in analysis by George Pólya and Gábor Szegő. Published in 1925, the two volumes are titled (I) Series. Integral Calculus. Theory of Functions.; and (II) Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry.

  9. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Another classic problem in enumerative geometry, of similar vintage to conics, is the Problem of Apollonius: a circle that is tangent to three circles in general determines eight circles, as each of these is a quadratic condition and 2 3 = 8. As a question in real geometry, a full analysis involves many special cases, and the actual number of ...