Search results
Results From The WOW.Com Content Network
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.
Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:
When two models are nested, models can also be compared using a chi-square difference test. The chi-square difference test is computed by subtracting the likelihood ratio chi-square statistics for the two models being compared. This value is then compared to the chi-square critical value at their difference in degrees of freedom.
Numerous other tests can be viewed as likelihood-ratio tests or approximations thereof. [15] The asymptotic distribution of the log-likelihood ratio, considered as a test statistic, is given by Wilks' theorem. The likelihood ratio is also of central importance in Bayesian inference, where it is known as the Bayes factor, and is used in Bayes' rule.
For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.
The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.
In statistics, the score (or informant [1]) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular value of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter