When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  4. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a vector whose jth element (=, …,) is one of the random variables.

  5. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  6. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  7. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.

  8. Complex random vector - Wikipedia

    en.wikipedia.org/wiki/Complex_random_vector

    The covariance matrix (also called second central moment) contains the covariances between all pairs of components. The covariance matrix of an random vector is an matrix whose (,) th element is the covariance between the i th and the j th random variables.

  9. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    Suppose we wish to make inference about a covariance matrix whose prior has a (,) distribution. If the observations = [, …,] are independent p-variate Gaussian variables drawn from a (,) distribution, then the conditional distribution has a (+, +) distribution, where =.