Ad
related to: hydrochloric acid in aqueous solution formula calculator
Search results
Results From The WOW.Com Content Network
Physical properties of hydrochloric acid, such as boiling and melting points, density, and pH, depend on the concentration or molarity of HCl in the aqueous solution. They range from those of water at very low concentrations approaching 0% HCl to values for fuming hydrochloric acid at over 40% HCl.
At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride gas and hydrochloric acid are important in technology and industry. Hydrochloric acid, the aqueous solution of hydrogen chloride, is also commonly given the formula HCl.
An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula . For example, a solution of table salt , also known as sodium chloride (NaCl), in water would be represented as Na + (aq) + Cl − (aq) .
When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution. The solution is said to be neutral as it is neither acidic nor alkaline. The pH of such a solution is close to a value of 7; the exact pH value is dependent on the temperature of the solution. Neutralization is an exothermic reaction.
For aqueous solutions of an acid HA, the base is water; the conjugate base is A − and the conjugate acid is the hydronium ion. The Brønsted–Lowry definition applies to other solvents, such as dimethyl sulfoxide : the solvent S acts as a base, accepting a proton and forming the conjugate acid SH + .
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, .The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.
Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples. Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes. In an aqueous solution there will be some CH 3 COOH and some CH 3 COO − and H +.
Alternatively, it may be prepared by adding hydrochloric acid to bismuth oxide and evaporating the solution. Bi 2 O 3 + 6 HCl → 2 BiCl 3 + 3 H 2 O. Also, the compound can be prepared by dissolving bismuth in concentrated nitric acid and then adding solid sodium chloride into this solution. [2] Bi + 6 HNO 3 → Bi(NO 3) 3 + 3 H 2 O + 3 NO 2