Search results
Results From The WOW.Com Content Network
ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
Discrete logarithm. The problem of inverting exponentiation in finite groups. In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm log b a is an integer k such that bk = a.
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base of 1000 is 3, or log10 (1000) = 3.
Calculus. In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.
Common logarithm. A graph of the common logarithm of numbers from 0.1 to 100. In mathematics, the common logarithm is the logarithm with base 10. [1] It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as ...
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...