Search results
Results From The WOW.Com Content Network
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, official symbol HMGCR) is the rate-controlling enzyme (NADH-dependent, EC 1.1.1.88; NADPH-dependent, EC 1.1.1.34) of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a ...
Mevalonate pathway diagram showing the conversion of acetyl-CoA into isopentenyl pyrophosphate, the essential building block of all isoprenoids. The eukaryotic variant is shown in black. Archaeal variants are shown in red and blue. The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential ...
The following reaction involves the joining of acetyl-CoA and acetoacetyl-CoA to form HMG-CoA, a process catalyzed by HMG-CoA synthase. [8] In the final step of mevalonate biosynthesis, HMG-CoA reductase, an NADPH-dependent oxidoreductase, catalyzes the conversion of HMG-CoA into mevalonate, which is the primary regulatory point in this pathway.
Statins (or HMG-CoA reductase inhibitors) are a class of medications that reduce illness and mortality in people who are at high risk of cardiovascular disease. [1]Low-density lipoprotein (LDL) carriers of cholesterol play a key role in the development of atherosclerosis and coronary heart disease via the mechanisms described by the lipid hypothesis.
The mevalonate pathway (MVA pathway or HMG-CoA reductase pathway) and the MEP pathway are metabolic pathways for the biosynthesis of isoprenoid precursors: IPP and DMAPP. Whereas plants use both MVA and MEP pathway, most organisms only use one of the pathways for the biosynthesis of isoprenoid precursors.
Mevalonic acid is a precursor in the biosynthetic pathway known as the mevalonate pathway that produces terpenes and steroids. Mevalonic acid is the primary precursor of isopentenyl pyrophosphate (IPP), that is in turn the basis for all terpenoids. Mevalonic acid is chiral and the (3 R)- enantiomer is the only one that is biologically active.
HMG-CoA reductase family. In molecular biology, the HMG-CoA reductase family is a family of enzymes which participate in the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. There are two distinct classes of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase enzymes: class I consists of eukaryotic and ...
In biochemistry, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3- h ydroxy-3- m ethyl g lutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate -dependent isoprenoid biosynthesis pathway.