Search results
Results From The WOW.Com Content Network
k. -means++. In data mining, k-means++[1][2] is an algorithm for choosing the initial values (or "seeds") for the k -means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k -means problem—a way of avoiding the sometimes poor clusterings found by the standard ...
Determining the number of clusters in a data set, a quantity often labelled k as in the k -means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k -means, k -medoids and expectation–maximization ...
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
Science fair. A science fair or engineering fair is an event hosted by a school that offers students the opportunity to experience the practices of science and engineering for themselves. In the United States, the Next Generation Science Standards makes experiencing the practices of science and engineering one of the three pillars of science ...
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
Instead of using the average silhouette to evaluate a clustering obtained from, e.g., k-medoids or k-means, we can try to directly find a solution that maximizes the Silhouette. We do not have a closed form solution to maximize this, but it will usually be best to assign points to the nearest cluster as done by these methods.
The k-medoids problem is a clustering problem similar to k -means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [1] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points labeled ...
In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.