When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagram of dinitrogen. With nitrogen, we see the two molecular orbitals mixing and the energy repulsion. This is the reasoning for the rearrangement from a more familiar diagram. The σ from the 2p is more non-bonding due to mixing, and same with the 2s σ. This also causes a large jump in energy in the 2p σ* orbital.

  3. Nitric oxide - Wikipedia

    en.wikipedia.org/wiki/Nitric_oxide

    Nitric oxide (nitrogen oxide or nitrogen monoxide[1]) is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula (• N=O or • NO).

  4. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    In chemistry, a molecular orbital (/ ɒrbədl /) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region.

  5. Nitrogen - Wikipedia

    en.wikipedia.org/wiki/Nitrogen

    Molecular orbital diagram of dinitrogen molecule, N 2. There are five bonding orbitals and two antibonding orbitals (marked with an asterisk; orbitals involving the inner 1s electrons not shown), giving a total bond order of three. Atomic nitrogen, also known as active nitrogen, is highly reactive, being a triradical with three unpaired electrons.

  6. Biological functions of nitric oxide - Wikipedia

    en.wikipedia.org/wiki/Biological_functions_of...

    Nitric oxide (nitrogen monoxide) is a molecule and chemical compound with chemical formula of N O. In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. [1] It is a powerful vasodilator with a half-life of a few seconds in the blood.

  7. Pi backbonding - Wikipedia

    en.wikipedia.org/wiki/Pi_backbonding

    Pi backbonding. In chemistry, π backbonding is a π-bonding interaction between a filled (or half filled) orbital of a transition metal atom and a vacant orbital on an adjacent ion or molecule. [1][2] In this type of interaction, electrons from the metal are used to bond to the ligand, which dissipates excess negative charge and stabilizes the ...

  8. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    The highest occupied orbital energy level of dioxygen is a pair of antibonding π* orbitals. In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state.

  9. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. The MOT explains the paramagnetic nature of O 2, which valence bond theory cannot explain. In molecular orbital theory, electrons in a molecule are not ...